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ABSTRACT
Multi-agent problem domains may require distributed algorithms
for a variety of reasons: local sensors, limitations of communica-
tion, and availability of distributed computational resources. In the
absence of these constraints, centralized algorithms are often more
efficient, simply because they are able to take advantage of more
information. We introduce a variant of the cooperative target ob-
servation domain which is free of such constraints. We propose
two algorithms, inspired by K-means clustering and hill-climbing
respectively, which are scalable in degree of decentralization. Nei-
ther algorithm consistently outperforms the other across over all
problem domain settings. Surprisingly, we find that hill-climbing
is sensitive to degree of decentralization, while K-means is not. We
also experiment with a combination of the two algorithms which
draws strength from each.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development; G.3
[Probability and Statistics]: Probabilistic Algorithms; I.2.11
[Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Algorithms

Keywords
Multiagent Systems, K-Means Clustering, Hill-climbing

1. INTRODUCTION
Cooperative target observation (CTO) problems are interesting

testbeds for studying multi-agent coordination, planning, and robot
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control. These problems are important both because they aregood
examples of dynamic multi-agent interaction and emergent behav-
ior. In addition, there are many application motivations for studying
CTO: unmanned vehicle control for security, reconnaissance, and
surveillance tasks; tracking items in a warehouse or factory; track-
ing people in search and rescue; and keeping tissue in continuous
view during medical procedures [10, 16].

Traditional approaches to such problems are often centralized: a
single process gathers all information about the environment, com-
putes the best avenue to solve the problem, and dispatches com-
mands to each agent. However, a decentralized approach might be
required for several reasons: local sensors, limitations of commu-
nication, and availability of distributed computational resources. In
fully decentralized approaches, agents individually decide what to
do, while partly-decentralized techniques involve decomposing the
team into multiple squads, where all agents in a squad are man-
aged by a single process. Thus, partly-decentralized approaches
represent a trade-off between these two extremes, and as such may
provide the advantages of each, with few disadvantages.

In this paper we use CTO as a problem domain for comparing
the performance of centralized, partly-decentralized, orfully de-
centralized algorithms under different levels of dynamismand sen-
sor capabilities. The kind of CTO problem we are using is one
in which mobile agents, (calledobservers) collectively attempt to
stay within an “observation range” of as many targets as possible.
The targets wander randomly and are slower than the observers.
For purposes of this paper, the environment is bounded and clear
of obstacles. CTO problems of this type have been popularized by
Lynne Parker [16], and are sometimes known as CMOMMT (“Co-
operative Multi-robot Observation of Multiple Moving Targets”).
In Parker’s configuration of the problem, an observer does not have
a global view of all available targets to observe. This formulation
of the problem strongly suggests a distributed and greedy control
solution due to the lack of global information.

We have reformulated CTO in a slightly different fashion. In
our problem domain, observers know the positions of all other ob-
servers and targets in the environment. This is not an unrealistic
assumption for some real domains, where long-range radar may
provide bearings for all targets of interest, and vision or other short-
range sensors may dictate the observation range. However our pri-
mary reason for reformulating the problem in this way is to lift
sensing constraints which strongly bias the problem towards dis-



tributed algorithms; this gives us an opportunity to study the de-
gree to which global control is advantageous over varying degrees
of dynamism and other environment variables.

In this work, we propose two algorithms for controlling the ob-
servers, based on K-means clustering and hill-climbing respec-
tively. We also consider the two in combination: K-means cluster-
ing followed by hill-climbing. These three algorithms are tunably
decentralized by adjusting a parameter which dictates how many
subsetsthe observers are divided into. All observers within a given
subset collectively participate in a separate, concurrentdecision-
making process. Thus one unified set yields a centralized algo-
rithm, whereas many small subsets are decentralized. We note as
an aside that the ability to work under different subset sizes conveys
another advantage: the observers can work in environments where
independent agents (humans perhaps) are also participating in the
observation task. The observers can simply treat the humansas a
separate “subset” and will attempt to take advantage of the presence
of the human observers in the environment.

The algorithms presented are interesting in several ways. First,
we have found them very effective solutions to the problem. Sec-
ond, they aretunably decentralized, meaning that we can adjust
them gradually from fully decentralized versions to fully central-
ized versions with a single parameter. This provides us witha use-
ful tool for analysis of degree of decentralization. Third,surpris-
ingly, in the CTO problem studied, the degree of decentralization
has very different effects on otherwise reasonably comparable al-
gorithms. It isnotnecessarily the case that decentralization is likely
to perform worse, at least in the problem studied, as we wouldin-
tuitively imagine due to its lack of complete information about the
intentions of other agents.

As many communications constraints are functions of distance,
the obvious way to divide agents into squads is to group together
agents physically located near one another, and to dynamically
change squad membership as agents move through space. We are
presently experimenting with this more complex approach: how-
ever for the initial experiments in this paper, we form squads inde-
pendent of location and keep membership static. This initial inves-
tigation reduces the number of complicating factors involved in the
experiment.

The paper is organized as follows. Section 2 discusses related
work. Section 3 describes the simulation and the K-means and
hill-climbing algorithms. Section 4 compares the algorithms and
discusses the results. The algorithms are compared for different
subset sizes to see how performance degrades as the targets be-
come faster, the sensing radius decreases, and speed of the world
increases relative to algorithm execution. Section 5 provides con-
cluding remarks.

2. RELATED WORK
There is considerable previous work in areas related to CTO.

Many of these areas deal with multi-agent problems in dynamic
environments with mobile agents. One example, robot foraging,
asks a team of robots to collectively forage for pucks or cans, and
to move them to specially designated areas. The efficiency ofan
approach may be defined by how quickly it completes the foraging
task [6, 14], or by the number of items collected in a fixed amount
of time. Related tasks include collective sorting and clustering [3,
7].

Foraging and clustering tasks do not generally require interac-
tion and coordination: in fact, many can be performed by a single
agent. In contrast, stick-pulling requires robots to cooperatively lift
sticks out of holes, a task so arranged as to be impossible fora
single robot to perform [9, 11, 13]. Another task requiring coordi-

Figure 1: Screenshot of the model. Small doubly-circled dots
are observers. Outer circles are their observation ranges.
Large dots are targets. Straight lines connect observers with
newly-chosen desired destinations.

nation is robot formation [1], where a team of agents must move
across a field in minimal time without colliding with obstacles or
other robots. Problems such as collaborative mapping [4, 8]can
be performed by a single robot, but are useful for studyinghow the
multiple robots collaboratively agree on which of several possible
map interpretations is correct.

Parker ([16, 18]) has studied the form of CTO most similar to our
work, termed CMOMMT (“Cooperative Multi-robot Observation
of Multiple Moving Targets”). As discussed earlier, in CMOMMT
a team of observer agents attempt to move within a given distance
of as many targets at once. An agents’ sensor range is limited, but it
can additionally see targets within sensor ranges of certain nearby
teammates. One approach to solving the problem is to use weighted
force vectors applied by nearby targets, observer agents, and obsta-
cles to guide agent movement. CMOMMT has been proven to be
NP-hard [17], and has been demonstrated in simulation and onreal
robots [15].

Other techniques exists for controlling robots in a CTO domain.
One approach is to include bargaining in the control algorithm [20].
Each robot is ranked according to its “eligibility” to perform each
of N tasks, and robots then perform tasks according to preferred
rankings. Lazy reinforcement learning has also been applied to the
CTO problem, with favorable results [19].

Finally, CTO is related to the problem of multi-target tracking
[2, 5], which is concerned with the generation of target tracks from
data collected by non-geospatially located sensors. A typical appli-
cation is air-traffic control, where the air-traffic controloperators
need a complete picture of aircraft tracks.

3. MODEL DESCRIPTION
Our version of CTO is a variation of CMOMMT which allows

all observer agents to see all targets and other observers inthe envi-
ronment. The environment is a nontoroidal rectangular continuous



2D field free of obstacles. The model containsN observers andM
targets, withN < M. Let O denote the set of all observers, andT
denote the set of all targets. The observers can move in any direc-
tion. Each observer has an identicalobservation range R, and can
observe any target which falls within a circle centered at the ob-
server and of radiusR. Figure 1 shows a snapshot of the model in
action.

The targets move randomly throughout the space, and do not try
to avoid the observers. Movement of both the targets and observers
is done by setting a destination point, then having the agenttravel
towards this point. The targets travel towards their destination point
for at most 100 time steps. If they reach the destination before 100
time steps, then they compute a new destination point immediately.
Targets’ destination points are chosen at random from within a local
region (one quarter of the environment height and width) centered
on the target: the locality helps prevent targets from clustering near
the center of the field on the way to their intended destinations.

Observers compute a new destination point everyα time steps.
If one reaches its destination point in less thanα time steps, then
it waits until a new destination point is computed. The destination
point is determined using one of three cooperative target observa-
tion algorithms:

1. Hill-climbing with subsets

2. K-means clustering with subsets

3. K-means clustering with subsets followed by hill-climbing
with subsets

Tunable decentralization of the algorithms works as follows. The
N observers are divided intoC disjoint subsets, and a separate in-
stance of the chosen algorithm is run for each subset. Each al-
gorithm instance adjusts the locations only of the observers in its
subset, and presumes that all observers outside the subset,and all
targets, are fixed in their current positions. A subset sizeC/N may
range from 1 toN: if the subset size isN, then all observers partici-
pate in the same decision-making process, whereas smaller subsets
yield higher degrees of algorithm decentralization.

In future work we will extend this to investigate richer (andmore
CTO-application driven) methods to create the subsets. Forexam-
ple, all agents within communications range of each other could
form a spanning tree, and each spanning tree will define a sub-
set. As agents move throughout space, the spanning trees would
change, producing dynamic subset membership.

3.1 Hill-climbing with Subsets
Hill-climbing iteratively improves candidate observer destina-

tions by first copying the current locations into the initialcandi-
date destinations, then performing 1000 iterations of the following
operation:

1. Copy the current candidate observer positions and mutatethe
copy by randomizing the position of one observer member of
the subset. The observer position is picked at random from
the intersection of the field and a box centered at the ob-
server with an initial width and height equal to one-half the
environment width and height. The box decreases in width
and height by 1% each iteration, but not below one tenth of
the environment width and height.

2. If the mutated child is “better” than its parent, replace the
parent with the child, else discard the child.

3. Goto 1

A candidates’ quality is assessed by testing how it affects the
entire observer team, not just the subset. We use a lexicographic
ordering of various useful quality measures. Specifically,we accept
the child and replace the parent with it using the following test:

1. Accept the child if it observes more targets.

2. Else if the child and parent observe the same number of tar-
gets, compute

H =
X

o∈O

X

t∈T



dist(o,t) if R/2 < dist(o,t) < R
0 otherwise

where dist(o,t) is the Euclidean distance between the ob-
servero∈O and targett∈T. Accept the child solution if
Hchild < Hparent. This encourages the observers to keep
themselves well within the observation range of as may tar-
gets as possible.

3. Else ifHchild = Hparent, and the child and parent observe the
same number of targets, then compute

G =
X

o∈O′
min
t∈T ′

dist(o,t)

whereO′ is the set of observers that observe no targets, and
T ′ is the set of targets not observed by any observers. Accept
the child solution ifGchild < Gparent. This encourages the
observers to move towards unobserved targets.

4. Else reject the child.

After the hill-climber has iterated 1000 times, we determine
which observer in the subset will go to which of the new candidate
destinations. For this we used a simple greedy coloring algorithm.

1. Pick the candidate destination and the observer in the subset
that are closest to one another.

2. Assign the observer to that destination.

3. Remove the observer and the destination from consideration.

4. Goto 1.

3.2 K-means Clustering with Subsets
K-means is a widely used clustering algorithm which assumes

that the number of clusters is knowna priori. Suppose thatN
points need to be grouped intoK clusters, with the requirement
that the mean distance from the points to the centers of the clusters
is minimized. The algorithm works as follows

1. SelectK initial centers for the clusters.

2. Assign each of theN points according to which of the cluster
centers is closest to the point.

3. Reposition each cluster center slightly closer to the mean lo-
cation of all the points assigned to that center. More specifi-
cally, letKi be theith cluster center, letmi be the mean of the
all points assigned to theith center, and letα be the step size.
Then each center is repositioned by

Ki ← (1−α)Ki +αmi

4. Go to 2.
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Figure 2: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the sensor range.

This process is repeated until no more significant progress is
made, or until time is exhausted.

In order to apply the K-means algorithm to our cooperative tar-
get observation problem domain, we consider the targets to be the
points to be clustered, and observer destinations as the candidate
cluster centers. We set the initial positions of the clustercenters to
the current positions of the observers, and assign each to the ob-
server at that position. We modify the clustering algorithmso that
the only candidate centers which are allowed to move (in step3)
are those assigned to observers which are members of the current
subset.

4. EXPERIMENTS
We expected that both the K-means clustering and the hill-

climbing algorithms would degrade in performance as the targets
got faster, as the rate of algorithmic updates slowed, and asthe size
of the sensing radii decreased. This was consistently borneout in
our results. However our primary interest was in seeing how dif-
ferent levels of decentralization would effect the degradation. As
both algorithms are tunably decentralized in a similar fashion, we
expected that both would degrade in the same way: but this wasnot
at all the case. Below we discuss this result, followed by a compar-
ison of the two algorithms against one another, and against their
combination.

All experiments were done on the MASON simulation environ-
ment [12]. In performing the experiments, for each simulation run
we gathered the mean over all timesteps of the number of targets
under observation. If a target was observed by multiple observers,
then we counted the target only once. In all experiments we held
the following parameters fixed:

• Width and Height of Field: 150 x 150 units

• Timesteps per simulation run: 1500

• Number of simulation runs per data point: 30

• Number of targets: 24

• Number of observers: 12

• Speed of observers: 1 unit per timestep

• For K-means:α = 0.25
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Figure 3: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the target speed.

In order to establish statistical significance when comparing the
results, we used a series of Welch’s two sample tests1. Addition-
ally, we used Bonferroni’s inequality to compensate for thelarge
number of tests performed. As a consequence, each of our two
sample tests was performed at confidence level 99.995%.

4.1 Results
Initial experiments compared K-means and hill-climbing against

random and stationary behaviors. We found that K-means and the
hill-climber are statistically better than the random and stationary
algorithms over all combinations of target speed, subset size, range,
and rate of updates.

Hill-climbing. Figures 2, 3, and 4 show the performance of the
hill-climbing algorithm as the range, target speed, and update rates
vary, respectively. If not being varied, the sensor range isset to 15,
the target speed to 0.5, and the update rate to 10. In each graph, we
also change the degree of decentralization. The results verify that
performance significantly decreases when either range decreases,
target speed increases, or update rate decreases. More importantly,
the graphs show that increasing the degree of decentralization (re-
ducing the subset size) leads to a decrease in mean number of tar-
gets observed. Notably though, the specific difference due to de-
centralization is almost invariant over any change in environment
parameter.

Our findings are supported by statistical tests: we comparedsub-
set sizes of 1 and 12 and found significant differences acrossall
range, target speed, and update rate settings. Additionally, we com-
pared extreme settings of the range, target speed, and update rate
for the same subset size: all tests showed significant differences.

K-means.We ran the same experiments with the K-means al-
gorithm, but it yielded a very different result. Like hill-climbing,
K-means performed best at large ranges, small target speeds, and
small update rates. However, K-means showedalmost identical
performanceregardless of subset size. Decentralization appears to
have had no effect on the results at all; thus, no figures are pre-
sented.

1Welch’s two sample test is a variant of Student’s t-test for non-
equal variances of samples.
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Figure 4: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the update rate.

Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 ≪ ≪ ≫ ≫ ≫

10 ≪ ≪ ≫ ≫ ≫

5 15 ≪ ≪ ≫ ≫ ≫

20 ≪ ≪ ≃ ≫ ≫

25 ≪ ≪ ≪ ≪ ≪

5 ≪ ≫ ≫ ≫ ≫

10 ≪ ≃ ≫ ≫ ≫

10 15 ≪ ≃ ≫ ≫ ≫

20 ≪ ≃ ≫ ≫ ≫

25 ≪ ≪ ≪ ≪ ≪

5 ≃ ≫ ≫ ≫ ≫

10 ≃ ≫ ≫ ≫ ≫

20 15 ≃ ≫ ≫ ≫ ≫

20 ≃ ≫ ≫ ≫ ≫

25 ≪ ≪ ≃ ≃ ≃

Table 1: K-means versus hill-climbing, subset size of 12.≫≫≫
means that K-means is statistically better,≪≪≪ means that hill-
climbing is statistically better and ≃≃≃ indicates no statistically
significant difference.

Comparison.Given that hill-climbing degraded with subset size
but K-means did not, we wondered how the two algorithms com-
pared against one another. We directly compared K-means against
hill-climbing across all combinations of domain parameters. We
chose to use a subset of size 12 as it yielded the best results for
hill-climbing. The results are shown in Table 1. In summary,hill-
climbing was better with slower-moving targets, while K-means
was better with faster targets.

This seems an intuitive result. When the targets are slow, orwhen
the sensor range is small, hill-climbing can often discoversuperior
solutions to K-means because K-means is centering observers in
the middle of clusters of targets without considering how far away
the targets in a cluster are from one another (see Figure 5). But as
targets increase in speed, K-means clustering begins to outperform
hill-climbing. Qualitatively, it is our observation that with fast tar-
gets hill-climbing cannot reach its “optimal” destinationin time,
and essentially chases targets around the field. But in many cases
clusters form because targets are moving towards one another (and

Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 ≫ ≃ ≪ ≪ ≪

10 ≃ ≃ ≪ ≪ ≪

5 15 ≃ ≪ ≪ ≪ ≪

20 ≃ ≃ ≪ ≪ ≪

25 ≫ ≫ ≃ ≃ ≃

5 ≫ ≪ ≪ ≪ ≪

10 ≃ ≪ ≪ ≪ ≪

10 15 ≃ ≪ ≪ ≪ ≪

20 ≃ ≪ ≪ ≪ ≪

25 ≃ ≃ ≃ ≃ ≃

5 ≪ ≪ ≪ ≪ ≪

10 ≪ ≪ ≪ ≪ ≪

20 15 ≪ ≪ ≪ ≪ ≪

20 ≪ ≪ ≪ ≪ ≪

25 ≃ ≃ ≃ ≃ ≃

Table 2: Hill-climbing versus hill-climbing and K-means in
combination, subset size of 12.≫≫≫ means that hill-climbing is
statistically better, ≪≪≪ means that the combination is statisti-
cally better, and≃≃≃ indicates no statistically significant differ-
ence.

hence towards the mean of the cluster). By centering itself in the
cluster mean, K-means clustering more often than not positions an
observer to be in the path of fast incoming targets ahead of time,
giving it a pronounced advantage in faster environments.

Hill-climbing outperformed K-means for very large radii: we
have yet to form an explanation for this, and indeed we had ex-
pected the opposite result.

In Combination.If each method did better under a certain
range of parameters, how about the two in combination? We com-
pared K-means followed by hill-climbing against K-means alone,
and also against hill-climbing alone. The combination of the two
does quite well as a middle-ground. In Table 2, the combination
is compared against hill-climbing: here it performs betterthan or
equal to hill-climbing almost everywhere, except for very small
radii or very low target speeds. Table 3 shows that it also per-
forms well against K-means, though K-means is still superior at
very high target speeds. Like K-means, the combination showed
almost identical performance across all subset sizes; thus, no fig-
ures are presented.

4.2 Discussion
Why is K-means clustering invariant over subset size? We be-

lieve the answer may lie in the fact that changes in the cluster means
are made through small increments; thus it is unlikely that the tar-
gets assigned to a given cluster will be claimed by a far remote clus-
ter. Nonetheless target disputes are bound to happen along cluster
boundaries, so we would have expectedsomedifference in perfor-
mance.

At any rate, it is striking that two good algorithms, neithercon-
sistently better than the other, would produce such different results
in terms of degradation due to decentralization. K-means cluster-
ing is proof against the argument that a centralization is bynature
superior in this problem domain: but hill-climbing likewise sug-
gests that centralizationcanoffer advantages over decentralization
for the same problem. To us, it is a surprising result.



Update Sensor Target Speed
Rate Range 0.1 0.25 0.5 0.75 0.9

5 ≪ ≪ ≃ ≫ ≫

10 ≪ ≪ ≪ ≃ ≫

5 15 ≪ ≪ ≪ ≃ ≫

20 ≪ ≪ ≪ ≪ ≃

25 ≪ ≪ ≪ ≪ ≪

5 ≪ ≪ ≃ ≫ ≫

10 ≪ ≪ ≃ ≃ ≫

10 15 ≪ ≪ ≃ ≃ ≫

20 ≪ ≪ ≪ ≃ ≃

25 ≪ ≪ ≪ ≪ ≪

5 ≪ ≪ ≃ ≫ ≫

10 ≪ ≃ ≃ ≫ ≫

20 15 ≪ ≃ ≃ ≫ ≫

20 ≪ ≪ ≃ ≫ ≫

25 ≪ ≪ ≃ ≃ ≃

Table 3: K-means versus hill-climbing and K-means in combi-
nation, subset size of 12.≫≫≫means that K-means is statistically
better,≪≪≪means that the combination is statistically better, and
≃≃≃ indicates no statistically significant difference.

5. CONCLUSION
This paper examined two algorithms for cooperative target ob-

servation, one inspired by K-means clustering and the otherbased
on hill-climbing. Both allowed for a customization of the degree
of decentralization for team control. At one extreme, each observer
decided where to move next; the opposite extreme allowed fora
unique central “team brain” to analyze the current situation and
compute destinations for each observer. We also tested the sensi-
tivity of the algorithms to three problem domain parameters: target
speed, observation range, and algorithm update rate relative to the
speed of the world.

Surprisingly, hill-climbing was sensitive to the degree ofdecen-
tralization, but K-means was not. This was the case even though
neither algorithm was uniformly superior to the other across all
problem settings. We further examined a combination of the two
algorithms which appeared to inherit advantages of both.

These algorithm-specific results suggest avenues for future work.
We plan to extend this problem domain to permit soft constraints,
such as communication rate, which increasingly make decentral-
ized methods more appealing. We will examine other approaches
to partial decentralization, such as control hierarchies,which might
confer the advantages of both centralization and decentralization.
Additionally, we are interested in the inclusion of obstacles and
other environmental features which increase problem complexity.
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