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ABSTRACT

Multi-agent problem domains may require distributed atfons
for a variety of reasons: local sensors, limitations of camioa-
tion, and availability of distributed computational resmes. In the
absence of these constraints, centralized algorithmsfeme more
efficient, simply because they are able to take advantageooé m
information. We introduce a variant of the cooperative ¢arap-
servation domain which is free of such constraints. We psepo
two algorithms, inspired by K-means clustering and hilintling
respectively, which are scalable in degree of decenttaizaNei-
ther algorithm consistently outperforms the other across all
problem domain settings. Surprisingly, we find that hilkdbing

is sensitive to degree of decentralization, while K-meanmoi. We
also experiment with a combination of the two algorithms ahhi
draws strength from each.

Categories and Subject Descriptors

1.6 [Simulation and Modelingl: Model Development; G.3
[Probability and Statistics]: Probabilistic Algorithms; 1.2.11
[Distributed Atrtificial Intelligence ]: Multiagent Systems

General Terms
Algorithms

Keywords

Multiagent Systems, K-Means Clustering, Hill-climbing

1. INTRODUCTION

Cooperative target observation (CTO) problems are intieges
testbeds for studying multi-agent coordination, plannargd robot
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control. These problems are important both because theyoa
examples of dynamic multi-agent interaction and emergehat-

ior. In addition, there are many application motivationsstudying

CTO: unmanned vehicle control for security, reconnaissaaad

surveillance tasks; tracking items in a warehouse or fgctoack-

ing people in search and rescue; and keeping tissue in cooisn
view during medical procedures [10, 16].

Traditional approaches to such problems are often cergdilia
single process gathers all information about the envirarine®m-
putes the best avenue to solve the problem, and dispatches co
mands to each agent. However, a decentralized approach bagh
required for several reasons: local sensors, limitatidreommu-
nication, and availability of distributed computationesources. In
fully decentralized approaches, agents individually decihat to
do, while partly-decentralized techniques involve decosimg the
team into multiple squads, where all agents in a squad are man
aged by a single process. Thus, partly-decentralized appes
represent a trade-off between these two extremes, and lasrayc
provide the advantages of each, with few disadvantages.

In this paper we use CTO as a problem domain for comparing
the performance of centralized, partly-decentralizedfutly de-
centralized algorithms under different levels of dynamamd sen-
sor capabilities. The kind of CTO problem we are using is one
in which mobile agents, (calledbserver} collectively attempt to
stay within an “observation range” of as many targets asipless
The targets wander randomly and are slower than the observer
For purposes of this paper, the environment is bounded aadt cl
of obstacles. CTO problems of this type have been poputhbye
Lynne Parker [16], and are sometimes known as CMOMMT (“Co-
operative Multi-robot Observation of Multiple Moving Tats").

In Parker’s configuration of the problem, an observer do¢fae
a global view of all available targets to observe. This folation

of the problem strongly suggests a distributed and greedyrao
solution due to the lack of global information.

We have reformulated CTO in a slightly different fashion. In
our problem domain, observers know the positions of all rotie
servers and targets in the environment. This is not an ustieal
assumption for some real domains, where long-range radgr ma
provide bearings for all targets of interest, and visiontbeoshort-
range sensors may dictate the observation range. Howewgrieu
mary reason for reformulating the problem in this way is fo li
sensing constraints which strongly bias the problem tosvaiid-



tributed algorithms; this gives us an opportunity to stuldg te-
gree to which global control is advantageous over varyirgyekes
of dynamism and other environment variables.

In this work, we propose two algorithms for controlling thie-o
servers, based on K-means clustering and hill-climbingpees
tively. We also consider the two in combination: K-meanstau
ing followed by hill-climbing. These three algorithms atmably
decentralized by adjusting a parameter which dictates hawym
subsetghe observers are divided into. All observers within a given
subset collectively participate in a separate, concurdecfsion-
making process. Thus one unified set yields a centralizea alg
rithm, whereas many small subsets are decentralized. \éeasot
an aside that the ability to work under different subsetsaaveys
another advantage: the observers can work in environmemtsew
independent agents (humans perhaps) are also partigjpatthe
observation task. The observers can simply treat the hurmsas
separate “subset” and will attempt to take advantage ofréesgmce
of the human observers in the environment.

The algorithms presented are interesting in several waiyst, F
we have found them very effective solutions to the problerc-S
ond, they argunably decentralizedmeaning that we can adjust
them gradually from fully decentralized versions to fullgntral-
ized versions with a single parameter. This provides us itke-
ful tool for analysis of degree of decentralization. Thisdypris-
ingly, in the CTO problem studied, the degree of decenttibn
has very different effects on otherwise reasonably conigparal-
gorithms. Itisnotnecessarily the case that decentralization is likely
to perform worse, at least in the problem studied, as we winald
tuitively imagine due to its lack of complete informationoaib the
intentions of other agents.

As many communications constraints are functions of degtan
the obvious way to divide agents into squads is to group heget
agents physically located near one another, and to dynéynica
change squad membership as agents move through space. We are
presently experimenting with this more complex approaabw-h
ever for the initial experiments in this paper, we form scuisdie-
pendent of location and keep membership static. This inites-
tigation reduces the number of complicating factors ingdlin the
experiment.

The paper is organized as follows. Section 2 discusseetelat
work. Section 3 describes the simulation and the K-means and
hill-climbing algorithms. Section 4 compares the algarithand
discusses the results. The algorithms are compared farelift
subset sizes to see how performance degrades as the taggets b
come faster, the sensing radius decreases, and speed obrtle w
increases relative to algorithm execution. Section 5 pl@vicon-
cluding remarks.

2. RELATED WORK

There is considerable previous work in areas related to CTO.
Many of these areas deal with multi-agent problems in dynami
environments with mobile agents. One example, robot fo@agi
asks a team of robots to collectively forage for pucks or cand
to move them to specially designated areas. The efficien@anof
approach may be defined by how quickly it completes the foagi
task [6, 14], or by the number of items collected in a fixed antou
of time. Related tasks include collective sorting and @risg [3,

7].

Foraging and clustering tasks do not generally requireacte
tion and coordination: in fact, many can be performed by glsin
agent. In contrast, stick-pulling requires robots to coapeely lift
sticks out of holes, a task so arranged as to be impossibla for
single robot to perform [9, 11, 13]. Another task requirirgprdi-
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Figure 1: Screenshot of the model. Small doubly-circled dat
are observers. Outer circles are their observation ranges.
Large dots are targets. Straight lines connect observers Wi
newly-chosen desired destinations.
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nation is robot formation [1], where a team of agents mustenov
across a field in minimal time without colliding with obsteslor
other robots. Problems such as collaborative mapping [4¢a8]
be performed by a single robot, but are useful for studyiogthe
multiple robots collaboratively agree on which of sevemaégble
map interpretations is correct.

Parker ([16, 18]) has studied the form of CTO most similanto o
work, termed CMOMMT (“Cooperative Multi-robot Observatio
of Multiple Moving Targets”). As discussed earlier, in CMQM
a team of observer agents attempt to move within a givenrdista
of as many targets at once. An agents’ sensor range is linhitedt
can additionally see targets within sensor ranges of cen@arby
teammates. One approach to solving the problem is to usénteeig
force vectors applied by nearby targets, observer agemslasta-
cles to guide agent movement. CMOMMT has been proven to be
NP-hard [17], and has been demonstrated in simulation ameladn
robots [15].

Other techniques exists for controlling robots in a CTO dioma
One approach is to include bargaining in the control alfarif20].
Each robot is ranked according to its “eligibility” to perfo each
of N tasks, and robots then perform tasks according to preferred
rankings. Lazy reinforcement learning has also been appli¢he
CTO problem, with favorable results [19].

Finally, CTO is related to the problem of multi-target tramk
[2, 5], which is concerned with the generation of targetksaftom
data collected by non-geospatially located sensors. A&pippli-
cation is air-traffic control, where the air-traffic contimbperators
need a complete picture of aircraft tracks.

3. MODEL DESCRIPTION

Our version of CTO is a variation of CMOMMT which allows
all observer agents to see all targets and other observirs @nvi-
ronment. The environment is a nontoroidal rectangularioanus



2D field free of obstacles. The model contai®bservers anil
targets, withN < M. Let O denote the set of all observers, ahd
denote the set of all targets. The observers can move in agg-di
tion. Each observer has an identictlservation range Rand can
observe any target which falls within a circle centered atdb-
server and of radiuR. Figure 1 shows a snapshot of the model in
action.

The targets move randomly throughout the space, and doynot tr
to avoid the observers. Movement of both the targets andodrse
is done by setting a destination point, then having the agane!
towards this point. The targets travel towards their desiom point
for at most 100 time steps. If they reach the destinationreef60
time steps, then they compute a new destination point imabelgti
Targets’ destination points are chosen at random from wihocal
region (one quarter of the environment height and width}erexl
on the target: the locality helps prevent targets from eltiisy near
the center of the field on the way to their intended destinatio

Observers compute a new destination point ewetime steps.
If one reaches its destination point in less tlatime steps, then
it waits until a new destination point is computed. The dedton
point is determined using one of three cooperative targstof-
tion algorithms:

1. Hill-climbing with subsets
2. K-means clustering with subsets

3. K-means clustering with subsets followed by hill-climdi
with subsets

Tunable decentralization of the algorithms works as fofioivhe
N observers are divided in disjoint subsets, and a separate in-
stance of the chosen algorithm is run for each subset. Each al
gorithm instance adjusts the locations only of the obserireits
subset, and presumes that all observers outside the sahseall
targets, are fixed in their current positions. A subset Gidd may
range from 1 to\: if the subset size iNl, then all observers partici-
pate in the same decision-making process, whereas smalieets
yield higher degrees of algorithm decentralization.

In future work we will extend this to investigate richer (amdre
CTO-application driven) methods to create the subsetsefam-
ple, all agents within communications range of each othetdco
form a spanning tree, and each spanning tree will define a sub-
set. As agents move throughout space, the spanning tredd wou
change, producing dynamic subset membership.

3.1 Hill-climbing with Subsets

Hill-climbing iteratively improves candidate observerstira-
tions by first copying the current locations into the inite@ndi-
date destinations, then performing 1000 iterations of tflewing
operation:

1. Copy the current candidate observer positions and miftate
copy by randomizing the position of one observer member of
the subset. The observer position is picked at random from
the intersection of the field and a box centered at the ob-
server with an initial width and height equal to one-half the
environment width and height. The box decreases in width
and height by 1% each iteration, but not below one tenth of
the environment width and height.

. If the mutated child is “better” than its parent, replabe t
parent with the child, else discard the child.

3. Goto 1

A candidates’ quality is assessed by testing how it affdwgs t
entire observer teaymot just the subset. We use a lexicographic
ordering of various useful quality measures. Specificalaccept
the child and replace the parent with it using the followiesgtt

1. Accept the child if it observes more targets.

2. Else if the child and parent observe the same number of tar-
gets, compute

H=>_>

0cOteT
where disfo,t) is the Euclidean distance between the ob-
serverocO and targetteT. Accept the child solution if
Hehild < Hparent:  This encourages the observers to keep
themselves well within the observation range of as may tar-
gets as possible.

dist(o,t)
0

if R/2<dist(o,t) <R
otherwise

. Else ifHchilg = Hparent, @and the child and parent observe the
same number of targets, then compute

G= indi
> mindist(o,t)
oc

whereQ' is the set of observers that observe no targets, and
T’ is the set of targets not observed by any observers. Accept
the child solution ifGehilg < Gparent: This encourages the
observers to move towards unobserved targets.

4. Else reject the child.

After the hill-climber has iterated 1000 times, we determnin
which observer in the subset will go to which of the new caatd
destinations. For this we used a simple greedy coloringrilkgo.

1. Pick the candidate destination and the observer in theesub
that are closest to one another.

2. Assign the observer to that destination.
3. Remove the observer and the destination from considerati

4. Goto 1.

3.2 K-means Clustering with Subsets

K-means is a widely used clustering algorithm which assumes
that the number of clusters is knovenpriori. Suppose thaN
points need to be grouped into clusters, with the requirement
that the mean distance from the points to the centers of tisterk
is minimized. The algorithm works as follows

1. SelecK initial centers for the clusters.

2. Assign each of thBl points according to which of the cluster

centers is closest to the point.

. Reposition each cluster center slightly closer to themiea
cation of all the points assigned to that center. More specifi
cally, letK; be theit" cluster center, lety; be the mean of the
all points assigned to tH&' center, and let be the step size.
Then each center is repositioned by

Ki — (1—0)Kj +om

. Goto 2.
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Figure 2: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the sensor range.

This process is repeated until no more significant progress i
made, or until time is exhausted.

In order to apply the K-means algorithm to our cooperative ta
get observation problem domain, we consider the targets thé
points to be clustered, and observer destinations as ttoidzaea
cluster centers. We set the initial positions of the cluseatters to
the current positions of the observers, and assign eactetolth
server at that position. We modify the clustering algoritborthat
the only candidate centers which are allowed to move (in 3jep
are those assigned to observers which are members of trenturr
subset.

4. EXPERIMENTS

We expected that both the K-means clustering and the hill-
climbing algorithms would degrade in performance as thgetsr
got faster, as the rate of algorithmic updates slowed, aritkasize
of the sensing radii decreased. This was consistently bmuhé
our results. However our primary interest was in seeing hidw d
ferent levels of decentralization would effect the degtiata As
both algorithms are tunably decentralized in a similar ifashwe
expected that both would degrade in the same way: but thisiatas
at all the case. Below we discuss this result, followed byrapar-
ison of the two algorithms against one another, and agaiest t
combination.

All experiments were done on the MASON simulation environ-
ment [12]. In performing the experiments, for each simolatiun
we gathered the mean over all timesteps of the number ofttarge
under observation. If a target was observed by multiple mess,
then we counted the target only once. In all experiments Ve he
the following parameters fixed:

e Width and Height of Field: 150 x 150 units
e Timesteps per simulation run: 1500

e Number of simulation runs per data point: 30

Number of targets: 24

o Number of observers: 12

Speed of observers: 1 unit per timestep

For K-meansno = 0.25
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Figure 3: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the target speed.

In order to establish statistical significance when conmgatihe
results, we used a series of Welch's two sample testsidition-
ally, we used Bonferroni's inequality to compensate for ldrge
number of tests performed. As a consequence, each of our two
sample tests was performed at confidence level 99.995%.

4.1 Results

Initial experiments compared K-means and hill-climbingiagt
random and stationary behaviors. We found that K-meanstand t
hill-climber are statistically better than the random atatisnary
algorithms over all combinations of target speed, subget sange,
and rate of updates.

Hill-climbing. Figures 2, 3, and 4 show the performance of the
hill-climbing algorithm as the range, target speed, ancatpdates
vary, respectively. If not being varied, the sensor rangeigo 15,
the target speed to 0.5, and the update rate to 10. In each,gvap
also change the degree of decentralization. The resulify vieat
performance significantly decreases when either rangecdses,
target speed increases, or update rate decreases. Mongdntpyo
the graphs show that increasing the degree of decentializ@e-
ducing the subset size) leads to a decrease in mean numtazer of t
gets observed. Notably though, the specific difference duget
centralization is almost invariant over any change in emuinent
parameter.

Our findings are supported by statistical tests: we compsube
set sizes of 1 and 12 and found significant differences aatbss
range, target speed, and update rate settings. Additjomadlcom-
pared extreme settings of the range, target speed, andeugadtat
for the same subset size: all tests showed significant diffags.

K-means.We ran the same experiments with the K-means al-
gorithm, but it yielded a very different result. Like hillkmbing,
K-means performed best at large ranges, small target speeds
small update rates. However, K-means showédost identical
performanceegardless of subset size. Decentralization appears to
have had no effect on the results at all; thus, no figures are pr
sented.

IWelch's two sample test is a variant of Student’s t-test fon-n
equal variances of samples.
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Figure 4: Performance of the hill-climbing algorithm using dif-
ferent subset sizes when varying the update rate.

Update | Sensor Target Speed

Rate | Range| 0.1 0.25| 0.5| 0.75| 0.9
5 < < > > >

10 < < > > >

5 15 K| < | > > | >
20 < | K ~ > | >

25 < < < < <

5 < > > > >

10 < ~ > > >

10 15 | @2 | > > |>»
20 < ~ > > >

25 < < < < <

5 ~ > > > >

10 o~ > > > >

20 15 o~ > 0> > | >
20 ~ > > > >

25 < < ~ ~ ~

Table 1: K-means versus hill-climbing, subset size of 123>
means that K-means is statistically better< means that hill-
climbing is statistically better and ~ indicates no statistically
significant difference.

Comparison.Given that hill-climbing degraded with subset size
but K-means did not, we wondered how the two algorithms com-
pared against one another. We directly compared K-mearissaga
hill-climbing across all combinations of domain paramstewWe
chose to use a subset of size 12 as it yielded the best results f
hill-climbing. The results are shown in Table 1. In summaéii};
climbing was better with slower-moving targets, while Kame
was better with faster targets.

This seems an intuitive result. When the targets are slowhen
the sensor range is small, hill-climbing can often discetgrerior
solutions to K-means because K-means is centering obseiver
the middle of clusters of targets without considering honefaay
the targets in a cluster are from one another (see Figure)a8
targets increase in speed, K-means clustering begins pedatm
hill-climbing. Qualitatively, it is our observation thatitl fast tar-
gets hill-climbing cannot reach its “optimal” destinationtime,
and essentially chases targets around the field. But in masgsc
clusters form because targets are moving towards one ar(atine

Update | Sensor Target Speed

Rate | Range| 0.1 | 0.25] 0.5] 0.75| 0.9
5 > ~ < < <

10 ~ ~ < < <

5 15 ~ < < < <
20 o~ o~ < < <

25 > > o~ ~ ~

5 P RN SRS

10 ~ < < < <

10 15 ~ < < < <
20 ~ < | K| ¥ | K

25 ~ ~ ~ ~ ~

5 < < < < <

10 < < < < <

20 15 < < < < <
20 < < < < <

25 ~ ~ ~ ~ ~

Table 2: Hill-climbing versus hill-climbing and K-means in

combination, subset size of 12>> means that hill-climbing is

statistically better, < means that the combination is statisti-
cally better, and ~ indicates no statistically significant differ-
ence.

hence towards the mean of the cluster). By centering itaetfié
cluster mean, K-means clustering more often than not positan
observer to be in the path of fast incoming targets aheadvd, ti
giving it a pronounced advantage in faster environments.

Hill-climbing outperformed K-means for very large radii:ew
have yet to form an explanation for this, and indeed we had ex-
pected the opposite result.

In Combination.If each method did better under a certain
range of parameters, how about the two in combination? We com
pared K-means followed by hill-climbing against K-meansna,
and also against hill-climbing alone. The combination @& tivo
does quite well as a middle-ground. In Table 2, the comlonati
is compared against hill-climbing: here it performs bettemn or
equal to hill-climbing almost everywhere, except for verjadl
radii or very low target speeds. Table 3 shows that it alse per
forms well against K-means, though K-means is still supeaio
very high target speeds. Like K-means, the combination shdow
almost identical performance across all subset sizes; truig-
ures are presented.

4.2 Discussion

Why is K-means clustering invariant over subset size? We be-
lieve the answer may lie in the fact that changes in the aluséans
are made through small increments; thus it is unlikely thattar-
gets assigned to a given cluster will be claimed by a far rerolois-
ter. Nonetheless target disputes are bound to happen diastgrc
boundaries, so we would have expecsednedifference in perfor-
mance.

At any rate, it is striking that two good algorithms, neitlven-
sistently better than the other, would produce such differesults
in terms of degradation due to decentralization. K-meaustet-
ing is proof against the argument that a centralization isdtyre
superior in this problem domain: but hill-climbing likevisug-
gests that centralizatiozan offer advantages over decentralization
for the same problem. To us, it is a surprising result.



Update| Sensor Target Speed
Rate | Range| 0.1 0.25| 0.5| 0.75| 0.9

5 < < ~ > >

10 | ¥ | K o~ >

5 15 < < | K ~ >
20 < < < < o~

25 | ¥ | K| ¥ | K

5 < | K ~ > >

10 < < ~ ~ >

10 15 < < ~ ~ >
20 | ¥ | x| ~ ~

25 < < < < <

5 < < ~ > >

10 < ~ ~ > >

20 15 < ~ ~ > | >
20 < < ~ > >

25 < < o~ ~ ~

Table 3: K-means versus hill-climbing and K-means in combi-
nation, subset size of 12> means that K-means is statistically
better, « means that the combination is statistically better, and
~ indicates no statistically significant difference.

5. CONCLUSION

This paper examined two algorithms for cooperative target o
servation, one inspired by K-means clustering and the dihsed
on hill-climbing. Both allowed for a customization of thegiee
of decentralization for team control. At one extreme, eduteover
decided where to move next; the opposite extreme alloweda for
unique central “team brain” to analyze the current situatmd
compute destinations for each observer. We also testecetig-s
tivity of the algorithms to three problem domain parametayet
speed, observation range, and algorithm update ratevestatithe
speed of the world.

Surprisingly, hill-climbing was sensitive to the degreedeten-
tralization, but K-means was not. This was the case evergthou
neither algorithm was uniformly superior to the other asraf
problem settings. We further examined a combination of w t
algorithms which appeared to inherit advantages of both.

These algorithm-specific results suggest avenues forgfutark.
We plan to extend this problem domain to permit soft constsai
such as communication rate, which increasingly make deslent
ized methods more appealing. We will examine other appesach
to partial decentralization, such as control hierarchidsch might
confer the advantages of both centralization and decérdtiain.
Additionally, we are interested in the inclusion of obseschnd
other environmental features which increase problem cexityl
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